
基本信息:
职称:讲师
邮箱:lzxuan@csuft.edu.cn
地址:中南林业科技大学化学与化工学院(经世楼408)
个人简介:
刘哲轩,男,中共党员,工学博士。中国化学会会员,Advanced Powder Materials、Carbon Neutralization等期刊青年编委。主要从事低成本水系储能二次电池关键材料研究和技术开发,以及生物质及其衍生材料的高值化利用,包括水系锌基二次电池、生物质衍生材料、电化学界面质荷传输等。
学习经历:
2019-2024年:中南大学,材料科学与工程学院,博士(导师:梁叔全教授、方国赵教授)
2015-2019年:中南大学,材料科学与工程学院,学士(导师:梁叔全教授)
任职情况:
2024年-至今:中南林业科技大学,讲师
科研情况:
主持/参与项目:
(1)国家自然科学基金面上项目,锌离子电池电解液与锰基材料适配性基础研究,参与;
(2)湖南省自然科学基金高校联合基金,基于多尺度孔道调控的木材衍生碳厚电极设计及多场耦合储能机制研究,参与。
获奖情况:
(1)湖南省化学化工学会青年化学化工奖,湖南省化学化工学会(2024.11)
(2)“Rising Star in Powder Materials” Distinguished Award,Advanced Powder Materials期刊(2024.05)
(3)湖南省第十五届研究生创新论坛一等奖,湖南省人民政府学位委员会办公室(2022.12)
(4)湖南省普通高等学校2024届优秀毕业生,湖南省教育厅(2024.05)
(5)博士研究生国家奖学金,中华人民共和国教育部(2022.12)
已发表论文:
[1] Zhexuan Liu, et al. Bimetallic Cladding-Constructed Interfacial Microenvironment Enabled Highly Reversible Powder Anode for Zn Metal Batteries. Adv. Mater. 2026. https://doi.org/10.1002/adma.202518003
[2] Zhexuan Liu*, et al. Understanding the Entropy Decoupling for Ion Transport in Ordered Biomimetic Materials Toward Durable Aqueous Zinc Metal Batteries. Angew. Chem. 2025, e22157. https://doi.org/10.1002/anie.202522157
[3] Zhexuan Liu#, et al. Anchored Zn(002) Orientation with Rapid Interfacial Response Guiding High-Utilization Alloy Anode and Ah-Scale Aqueous Zinc Metal Batteries. Angew. Chem. 2025, 138, 2, e17845. https://doi.org/10.1002/ange.202517845
[4] Zhexuan Liu*, et al. “Hive-and-honey” solid-liquid hybrid electrolyte with high conductivity for stable aqueous Zn-MnO2 batteries. Sci China Chem. 2025. https://doi.org/10.1007/s11426-025-3014-x
[5] Zhexuan Liu*, et al. In Situ Bi2O3 Reduction-Derived Zincophilic Sites Facilitate Highly Reversible Zinc Powder Anode. ACS Appl. Energy Mater. 2025, 8, 7744. https://doi.org/10.1021/acsaem.5c01038
[6] Zhexuan Liu*, et al. Regulation of bound water molecular state in mineral-based electrolyte for highly stable aqueous Zn-MnO2 batteries. Chinese Chem. Lett. 2025, 111388. https://doi.org/10.1016/j.cclet.2025.111388
[7] Zhexuan Liu*, et al. Restricted side reactions induced by water molecules via inorganic mineral electrolyte fillers for highly-stable Zn-MnO2 batteries. J. Power Sources 2025, 647, 237307. https://doi.org/10.1016/j.jpowsour.2025.237307
[8] Zhexuan Liu*, et al. Bilateral in-situ functionalization towards ah-scale aqueous zinc metal batteries. Nat. Commun. 2025, 16, 3142. https://doi.org/10.1038/s41467-025-58153-2
[9] Zhexuan Liu, et al. Effective proton conduction in quasi-solid zinc-manganese batteries via constructing highly connected transfer pathways. Angew. Chem. 2025, 64, e202417049. https://doi.org/10.1002/anie.202417049
[10] Zhexuan Liu, et al. Balanced interfacial ion concentration and migration steric hindrance promoting high-efficiency deposition/dissolution battery chemistry. Adv. Mater. 2022, 34, e2204681. https://doi.org/10.1002/adma.202204681
[11] Zhexuan Liu#, et al. Reconstructing interfacial manganese deposition for durable aqueous zinc-manganese batteries. Natl. Sci. Rev. 2023, 10, nwad220. https://doi.org/10.1093/nsr/nwad220
[12] Zhexuan Liu, et al. Ion migration and defect effect of electrode materials in multivalent-ion batteries. Prog. Mater. Sci. 2022, 125, 100911. https://doi.org/10.1016/j.pmatsci.2021.100911
[13] Zhexuan Liu*, et al. Quasi-decoupled solid-liquid hybrid electrolyte for highly reversible interfacial reaction in aqueous zinc-manganese battery. Adv. Energy Mater. 2023, 13, 2203766. https://doi.org/10.1002/aenm.202203766
[14] Zhexuan Liu, et al. Progress and prospect of low-temperature zinc metal batteries. Adv. Powder Mater. 2021, 1, 100011. https://doi.org/10.1016/j.apmate.2021.10.002
[15] Zhexuan Liu, et al. Improving stability and reversibility via fluorine doping in aqueous zinc-manganese batteries. Mater. Today Energy 2021, 22, 100851. https://doi.org/10.1016/j.mtener.2021.100851
[16] Zhexuan Liu#, et al. Fundamental understanding and effect of anionic chemistry in zinc batteries. Energy Environ. Mater. 2021, 5, 186. https://doi.org/10.1002/eem2.12225
[17] Zhexuan Liu, et al. Perspective on the synergistic effect of chalcogenide multiphases in sodium-ion batteries. Mater. Chem. Front. 2021, 5, 1694. https://doi.org/10.1039/D0QM01012J
[18] Zhexuan Liu, et al. Interlayer doping in layered vanadium oxides for low-cost energy storage: Sodium-ion batteries and aqueous zinc-ion batteries. ChemNanoMat 2020, 6, 1553. https://doi.org/10.1002/cnma.202000384
部分授权专利:
[1] 方国赵;刘哲轩;梁叔全,一种水系锌锰电池电解液及其应用,2022.04.21,中国专利,ZL 202210419614.8
[2] 方国赵;胡逸达;刘哲轩;梁叔全;宋叶鑫;胡超,准深共晶电解液及其在水系锌锰电池中的应用和电池,2022.07.13,中国专利,ZL 202210818594.1
[3] 方国赵;潘奕偲;刘哲轩;梁叔全,一种多组分混合态电解质及其制备方法和应用,2022.09.16,中国专利,ZL 202211124256.4
[4] 方国赵;郭珊;梁叔全;刘哲轩;张腾升;马君剑,一种提高水系锌锰电池工作电压的电解液及其应用,2020.05.21,中国专利,ZL 202010434226.8
[5] 方国赵;梁叔全;郭珊;张腾升;刘哲轩,一种水系离子电池混合态电解质,2019.12.04,中国专利,ZL 201911227517.3
